Abstract—This paper describes an incremental and adaptive front-end fusion system capable of providing accurate 3D models of the world using a single RGB camera. This is ideal for robotic platforms operating in indoor environments, where there is a need for high fidelity in the reconstruction of the world but at a low memory usage and computational cost. Our algorithm expands on previous volumetric variational approaches for 3D reconstruction by providing two main key features. The first is a novel incremental method for updating the cost volume which removes the need of keeping hundreds of multi-view comparison images, thus reducing the overall processing time and memory storage of the system. The second feature is a method for dynamically adapting the minimum and maximum depth limits of the cost volume as it adjusts to changes in scene depth, thus achieving optimum resolution in the 3D reconstruction.

I. INTRODUCTION

Service robots require spatial information about an environment in order to interact with it. For example, a robot moving in a retirement home would need to have an accurate reconstruction of the scene it is looking at in order to navigate safely and assist individuals in everyday tasks. Enabling this on mobile robotics, however, requires fast algorithms with low memory requirements. Previously, 3D reconstruction of a scene from multiple images using a monocular camera has been shown using both local and global methods [12]. In particular, global methods using variational techniques over a cost volume have shown impressive results for indoor environments [10]. Despite their ability to reconstruct the scene with a high level of fidelity, however, these methods are generally both computationally and memory intensive which makes them hard to implement in robotic applications.

The objective of this paper is to present a method which provides good scene reconstruction of indoor environments while minimizing computational and memory requirements. Our algorithm provides dense reconstruction of scenes by:

- incrementally adding new frames into a moving cost volume that is constantly being updated, and,
- adaptively changing the cost volume’s boundaries in order to adjust to changes in scene depth.

We call our algorithm Incremental and Adaptive Front-End Fusion (IAFEF), since it is designed to run as the front-end system for 3D sensing in robotic platforms.

II. RELATED WORK

Perhaps the first work showing how duality methods could be applied to variational problems is presented in [3]. By representing the problem as an inequality, the primal-dual hybrid gradient (PDHG) from linear programming can be applied to optimizations involving regularization. One of the first applications of this method to vision problems was the formulation of the ROF model for denoising [11]. These duality methods have been applied to more generic computer vision problems as well [1]. In order to increase the speed of convergence of these algorithms, adaptive step sizes can be used [4]. Further work in speeding up primal-dual hybrid gradients is shown in [7] by creating highly adaptive step sizes in performing the iterations.

The authors of Dense Tracking and Mapping in Real-Time (DTAM) [10] have shown that the data term used in these techniques can be represented volumetrically; that is, the cost volume stores a sum of photometric errors in a volumetric representation, where each voxel represents a sum of photometric errors for a set of comparison images at a specific depth and pixel coordinate. This volumetric method, however, introduces a non-convex component in the global optimization. In general, the primal-dual hybrid gradient method for global optimization is confined to convex functions [4]. To overcome this limitation, DTAM proposes alternating the primal-dual update steps with a finite search over the cost volume to determine the minimum. The optimization is also augmented by a quadratic relaxation term, as described in [13]. However, this volumetric approach has two major limitations.

The first limitation is the discretization of space. Increasing the number of voxels representing depth increases the precision of the system, i.e. a finer discretization in depth. This finer level of discretization, however, incurs a higher computation cost. Every additional level of discretization requires not only an additional calculation of the photometric error when constructing the cost volume, but also an additional step in the search through the cost volume performed at every iteration.

The second limitation is that the boundaries set on the cost volume, namely the minimum and maximum depths, can alter the quality of reconstruction if not properly set. For example, a far scene with short boundaries will have poor reconstruction. This is impractical in robotic applications, since it is known that depth ranges may change greatly as a robot navigates through the environment. For example, a robot scanning a desk at close range would require different depth ranges to one that is navigating down a long corridor.
A static boundary on the cost volume results in incorrect estimates for depth with the changing scene. We show that it is possible to adaptively expand and contract the volume by sampling the scene and obtaining a rough distribution of depth values. By limiting the volume to only visible depth areas, the system achieves optimum depth resolution.

In addition to the above problems, the reconstruction is performed over a set of images with an associated set of relative poses, selecting one image to serve as a reference image and the others serving as comparison images. To be useful for mobile robotics, however, the depth needs to be calculated with respect to the most current frame. The cost volume must then be constructed based on this reference image. This means that as the robot moves forward the cost volume needs to be recomputed at every new frame. This computation, and storage, becomes prohibitive as the number of frames fused is increased.

In this paper, we show that an iterative and adaptive method for forming the cost volume can be used to overcome the above mentioned problems.

III. METHOD

A. Overview

We follow the same global formulation for our depth optimization as the one proposed in [10], parameterizing in inverse depth, namely:

\[E = \int_{\Omega} g(\vec{u}) \left| \nabla \xi(\vec{u}) \right|_e + \frac{1}{2\theta} (\xi(\vec{u}) - \alpha(\vec{u}))^2 + \lambda C(\vec{u}, \alpha(\vec{u})) \, dx \]

(1)

where \(E \) is the total cost over the image domain and \(\vec{u} \) is the pixel coordinate, \(\vec{u} : \Omega \rightarrow R^2 \).

The first term in (1) is a regularizer which enforces second order smoothness over the inverse depth, \(\xi \). The regularizer is scaled by a weighting function which serves to reduce the regularization where there is a large image gradient. The weighting function \(g(\vec{u}) \) is defined by:

\[g(\vec{u}) = e^{-\alpha \left| \nabla I_\nu(\vec{u}) \right|^2} \]

(2)

Here, \(\alpha \) and \(\beta \) are constants selected to vary how much the image gradient, \(\nabla I_\nu(\vec{u}) \), impacts the weighting of the regularizer. The regularizer selected is a Huber norm of the gradient of inverse depth at a pixel coordinate, \(\left| \nabla \xi(\vec{u}) \right|_e \).

The last term in (1) is the data term, which is the value of the cost volume at a specific inverse depth and pixel coordinate scaled by a factor \(\lambda \). The cost at a specific pixel and inverse depth location is the sum of photometric errors between a reference image and a set of comparison images, \(I_m \).

\[C(\vec{u}, \xi(\vec{u})) = \frac{1}{|I_m|} \sum_m \left| I_\nu(\vec{u}) - I_m(\vec{W}(\vec{u}, \xi(\vec{u}))) \right| \]

(3)

where \(\vec{W} \) warps the pixel coordinate from the reference image \(I_\nu \) into each of \(m \) comparison images \(I_m \), assuming some estimated inverse depth value \(\xi(\vec{u}) \). \(\vec{W} \) is defined as:

\[\vec{W}(\vec{u}, \xi) = \Pi \left(KT_m C_\nu^{-1} \left(\begin{array}{c} \vec{u} \\ \xi(\vec{u}) \end{array} \right) \right) \]

(4)

where \(\Pi \) is a de-homogenization function, \(K \) is the camera matrix and \(T_m \) is the estimated pose between the comparison image and the reference image.

Finally, as described in [13], the original cost \(C \) and the regularizer are decoupled via an auxiliary variable, \(\alpha(\vec{u}) \). This appears as the second term in (1), which shows the coupling of the estimated inverse depth \(\xi(\vec{u}) \) and the auxiliary variable \(\alpha(\vec{u}) \). The variable \(\theta \) enforces the amount of coupling, with a smaller \(\theta \) enforcing stricter coupling. During a PDHG optimization, \(\theta \) is reduced at every iteration, thereby driving the original inverse depth term and auxiliary depth variables together.

The volumetric representation described above assumes some discretization of inverse depth, starting from a minimum inverse depth \(\xi_{min} \) (furthest scene depth) up to a maximum inverse depth \(\xi_{max} \) (closest scene depth). We refer the reader to the original DTAM paper [10] for more details on this formulation.

The system alternates between dense tracking and depth estimation. Dense tracking is performed using a 2.5D Lucas-Kanade style minimization of photometric errors [2][5] using the depth maps estimated at each step. Since the system starts without any depth map, a semi-dense monocular estimation pipeline similar to [6] is used to bootstrap the dense reconstruction algorithm. After the system is initialized, the semi-dense algorithm continues to run in the background but tracking fewer points. These points are then used to adapt to scene depth, where the minimum and maximum depth estimates from the semi-dense tracker are used to set the bounds on the new cost volume. This new volume is then populated by a linear interpolation of the old volume. The transformation of the cost volume and rescaling is done in a single step. After transformation, depth estimation is then performed by an optimization in accordance with a pixel-wise gradient ascent/descent in the dual/primal spaces.

B. Incremental

The novel component of our work involves how the cost volume is computed from frame to frame. To remove the requirement of keeping multiple images and multiple transforms between the images, we use a single cost volume which is incrementally transformed into the most current reference frame. This assumption is valid as long as the relative motion from frame to frame is small and is a common situation encountered in indoor environments, especially for cameras running at 30 frames per second or more.

Incrementally refining the cost volume from frame to frame is illustrated as a multistep process, shown in Fig. 1. In the first step, a new image is captured. In the estimation step, the newly acquired image and the previous estimate of depth with its associated intensity image are used to determine the relative pose of the camera using an RGD optimization based on the Efficient Second order Minimization (ESM) technique as described in [8]. In the transformation step, the estimated relative pose is used to reinterpret the cost volume from the perspective of the current frame. As illustrated in Fig. 2, a new cost volume is placed on top of the old cost volume.
In computing the traditional cost volume, the sum of all the photometric errors are stored in an Error Volume (EV) which is normalized by the total number of images used, maintained by the Frame Count Volume (FV). In our method, we separate the photometric errors from the number of images which have been used to calculate that error and track them individually. A Normalized Cost Volume (NCV) is then created by dividing the error by the number of frames that have reprojected for every pixel and inverse depth location, as shown in (5). The NCV is calculated on-demand by the depth estimator and is no longer needed after the optimization ends. The only volumes that are carried throughout the scene are the EV and FV.

$$NCV(\vec{u}, \xi(i)) = \frac{EV(\vec{u}, \xi(i))}{FV(\vec{u}, \xi(i))} \quad (5)$$

Once the EV and FV are transformed to the new frame, the photometric error of the last image with respect to the current image, $C(\vec{u}, \xi(i))$, is calculated and then added into the corresponding pixel and inverse depth location in the cost volume. The frame count for that location is then incremented by one. For any points that do not reproject, there will be either an additional cost term or none addition to the corresponding frame count volume. In order to overcome problems associated with occlusions, we down-weight the previous data exponentially, as shown in the equations below.

$$EV_{new}(\vec{u}, \xi(i)) = C(\vec{u}, \xi(i)) + \omega EV_{prev}(\vec{u}, \xi(i))$$
$$FV_{new}(\vec{u}, \xi(i)) = 1.0 + \omega FV_{prev}(\vec{u}, \xi(i)) \quad (6)$$

Further details regarding the weight parameter ω and its influence in the cost volume fusion process can be seen in Section IV.

C. Adaptive

As mentioned before, previous volumetric approaches use a constant sized cost volume. If improper bounds are chosen for discretization of the cost volume along inverse depth, either a significant portion of the information will be disregarded, or the cost volume will be larger than the scene to be reconstructed. In either case, this leads to a poor scene reconstruction. In other words, the bounds of the cost volume are subject to the following two problems:

1) **Over Sizing:** A lack of data in the near or far region of the cost volume indicates that there is no reprojection for that choice of inverse depth and that the boundaries of the cost volume should be narrowed. This is done by increasing ξ_{min} and/or decreasing ξ_{max}.

2) **Under Sizing:** A large percentage of the data in the near or far regions of the cost volume indicates that there is potentially more scene information outside of the bounds as set and that ξ_{max} should be increased or ξ_{min} decreased, respectively.

The bounds of the volume, namely ξ_{min} and ξ_{max}, can be dynamically altered in order to increase the resolution and accuracy based on the data provided by the semi-dense system running in parallel introduced in Section III. The reason for relying on a secondary system is that it is not possible for any volumetric representation to correctly infer depth values if the volume bounds are set incorrectly in the first place. The minimum and maximum depth estimates from the semi-dense tracker are used to set the scene maximum inverse depth and minimum inverse depth, respectively, as seen in Fig. 3.

Once we have calculated the desired range of the cost volume, $\xi_{min} \rightarrow \xi_{max}$, it is possible to use the same transform function to warp the cost volume to fit the new space. Any areas of the cost volume that do not fall within the old volume are marked as invalid.

![Fig. 2. A top down view of the cost volume at frame N (a) and a visual depiction of how the cost volume is transformed to a new cost volume at frame N+1 (b). Darker areas correspond to smaller photometric errors, indicating a surface. These values are mapped via a trilinear interpolation onto the new cost volume in (c). Any voxels of the cost volume in frame N+1 which are not contained in the previous cost volume are marked as invalid.](image)

![Fig. 3. Example of how the cost volume is expanded or contracted depending on estimated inverse depth ranges from the semi-dense tracker. A trilinear interpolation is used to expand/reduce the cost volume.](image)
IV. RESULTS

We tested our method with both simulated and real data. For our simulated runs, we use the Tsukuba dataset [9], a very popular dataset that provides ground truth depth and has a high variance of depth throughout the sequence. For our live test, we use a PointGrey Bumblebee camera set in single image (non-stereo) mode and capture a living room scene. As an error metric, we show both the average absolute difference between our estimated depth and the ground truth, as well as completeness and precision curves.

In order to test how well the reconstruction algorithm alone performs, any errors associated with pose estimation and scale ambiguities were removed by using the ground truth poses. We use the parameters from Table I when evaluating our proposed method. We also compare with a simplified version of our algorithm that only performs incremental volume updates, but does not dynamically adapt to changes in depth. The incremental only algorithm is designated by Incremental Front-End Fusion (IFEF) to differentiate from the full system that is both incremental and adaptive, IAFEF.

The final parameter in Table I, \(\omega \), controls the contribution to the incremental update of the cost volume as shown in (6). This value is directly related to the amount of potential occlusions in the scene given viewpoint changes. Ideally, the value should be as high as possible in order to obtain the maximum contribution from previous estimates into the new estimate. We plotted the mean error with different values of \(\omega \) for a section of the dataset that experiences high viewpoint changes and obtained Fig. 4.

Although a value of 0.7 seems to give the best performance for this particular test sequence, for the general case we selected 0.5, as we believe this to be a conservative value of \(\omega \) for any type of scene.

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\epsilon)</th>
<th>(\lambda_{\text{start}})</th>
<th>(\theta_{\text{start}})</th>
<th>(\theta_{\text{end}})</th>
<th>(\omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.6</td>
<td>(10^{-4})</td>
<td>1.0</td>
<td>1.0</td>
<td>(10^{-5})</td>
<td>0.5</td>
</tr>
</tbody>
</table>

A. Timings

We found that the time that it takes to transform the cost volume is the same as the time to add an image to the cost volume. This was expected, as the operations are essentially the same: they both require an evaluation at every pixel and inverse depth position in the cost volume. In other words, the time it takes to construct the cost volume for DTAM is dependent on the number of comparison frames to be fused, \(\mathcal{O}(M) \). On the other hand, since there is only a single comparison image in IFEF, the time to transform and add the most recent image remains constant, \(\mathcal{O}(1) \).

Therefore, the speed-up in our implementation is most noticeable as the number of comparison images is increased. Regular DTAM uses hundreds of comparison images, but even with a basic 30 window implementation we can see that there is a 15x speed-up in the construction of the cost volume: 30 additions to a cost volume as opposed to the time it takes to transform the volume and add a single image.

B. Iterative Method

An initial qualitative depth map reconstruction is shown in Fig. 5. For actual error measurements, we compute completeness and precision curves comparing a pure incremental approach of IFEF with a 30 windowed DTAM implementation. This means that our algorithm does not store any additional frames, but rather transforms the volume and fuses the current frame at every step. As seen in Fig. 6, IFEF slightly under-performs compared to a full windowed version of DTAM, but at a 15x speed-up gain. This is not unexpected, as the pure incremental IFEF only fuses small baseline images, whereas DTAM has both small and wide baselines in the comparison window.

![Fig. 5. Images from the Tsukuba sequence with their corresponding depth maps generated with our approach. The first depth map is of inferior quality, as it corresponds to the start of the sequence where there is limited data and little movement.](image-url)
To perform a complete comparison against DTAM, we use a windowed implementation of IFEF that contains a mixture of small to large baseline images. Our algorithm is inherently capable of supporting this hybrid approach, as the cost volume aggregation can happen whenever frames drop out of the selected window. This still has the advantage of a speed-up, as long as the window selected is kept small. This feature in our algorithm has the extra-benefit of giving fine control to the user, choosing performance over accuracy depending on the situation. The result can be seen in Fig. 7, where we tested the above procedure by adjusting the comparison window and seeing how the error changes with different window sizes.

Similarly, we tested how DTAM would compare to IFEF as if it was required to run under the same time constraint. To do this, we ran DTAM with the number of comparison selected to yield the equivalent time it takes IFEF to run (two frames). This comparison is shown in Fig. 8 and illustrates that our incremental cost volume aggregates more information than the two frame window set of DTAM. As can be seen, incremental front end fusion consistently outperforms DTAM from frame to frame. This is an indication of the advantage of using the incremental method, which aggregates all previous data.

C. Adaptive Window

In order to test our adaptive window, the window size was changed on every tenth frame using the information from the semi-dense tracker running in the background. As can be seen in Fig. 9, the Tsukuba dataset is a particularly challenging set for a fixed cost volume size implementation, such as DTAM, given the large variations in scene depth. Using the estimated depths from the semi-dense features, we were able to show a marked improvement in the general depth estimates.

V. CONCLUSIONS & FUTURE WORK

We have shown in this work two improvements in volumetric approaches for depth estimation. The first is that it is possible to incrementally update the cost volume representation from frame to frame. This incremental approach reduces the memory and computational time required to reconstruct a 3D scene from a multi-view stereo and provides depth estimates at the most current frame. In order to maintain a constant memory footprint and computation cost during reconstruction, we show that for small displacements it is possible to maintain a single cost volume and simply transform it into the most current frame. This recalculation allows us to continually estimate depth in the most recent frame. Results, like those seen in a live sequence in Fig. 10, show that this approach is comparable, and in most cases, surpasses traditional volumetric approaches where hundreds of frames need to be stored and re-calculated at every step.

We have also shown that it is possible to dynamically change the bounds of the cost volume to produce better estimates of the scene geometry. This enables mobile robots...
to operate in indoor environments with wide ranges of depth values, by only selecting the minimum and maximum depth bounds required to fit the scene in view.

In future work, we plan to implement techniques that could speed up the depth estimation process itself, which is the next biggest hurdle now that we have reduced the time required in building the cost volume. Some work has been done with Signed Distance Functions (SDFs), which makes it easy to raycast the depth seen from a particular viewpoint. We believe it is possible, after the pose is estimated by the tracker, to use this pose estimate to generate an initial depth map of the scene given the viewpoint change. This depth map can therefore be used as an initial value, effectively seeding the depth optimization by reducing the need to iterate through all the slices of the cost volume to find the minimum energy. This has the advantage of allowing us to increase the number of slices of the cost volume, which is desirable in order to achieve a finer granularity for the depth estimates, without incurring the penalty of a higher computation time.

VI. ACKNOWLEDGMENTS

This project was supported by the MITRE Corporation and Google Inc. All statements of fact, opinion, or analysis expressed are those of the author and do not reflect the official positions or views of sponsors.

REFERENCES